Introduction to Traits

- Define a "trait"
- Understand the role of traits (and their variation) in VBDs
- Discuss how traits can be incorporated into VBD predictions

What is a vector?

 any agent which carries and transmits an infectious agent between hosts

What kinds of animals are vectors?

Snails!

• Many!

White Fly Glassy Winged Sharpshooter

Aphids

Mealybugs

Sawyer beetles

Overview of VBD Transmission

Mechanical transmission

Overview of VBD Transmission

Biological transmission

Life Cycle of the Malaria Parasite

Source: Klein EY. Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread. Int J Antimicrob Agents (2013), http://dx.doi.org/10.1016/j.ijantimicag.2012.12.007

Ohm et al. 2016

Pathogens undergo obligate development in the mosquito

Transmission is at the intersection of two cycles: Pre-infectious Pre-infectious **Pre-infectious** Infectious cycle cycle cycle cycle **Extrinsic Incubation Period**

Overview of VBD Transmission

What are the elements we need to include?

H= Host, V=Vector _s=susceptible, _I=infected, _r=recovered,

H= Host, V=Vector _s=susceptible, _l=infected, _r=recovered, _e=exposed a= per-vector biting rate, b=vector->host transmission success (proportion of bites)

H= Host, V=Vector _s=susceptible, _I=infected, _r=recovered, _e=exposed a= per-vector biting rate, b=vector->host transmission success (proportion of bites), d=recovery

H= Host, V=Vector s=susceptible, i=infected, r=recovered, e=exposed a= per-vector biting rate, b=vector->host transmission success (proportion of bites), c= host-> vector transmission success (proportion of bites), d=recovery, rate, P= extrinsic incubation period

H= Host, V=Vector _s=susceptible, _I=infected, _r=recovered, _e=exposed, *a*= per-vector biting rate, *b*=vector->host transmission success (proportion of bites), *c*= host-> vector transmission success (proportion of bites), *d*=recovery, rate, *P*= extrinsic incubation period, μ = adult vector mortality rate

R₀ for a Directly-Transmitted Pathogen

The higher the contact rate, population size, and infectious period the greater the R0.

R₀ for a Vector-Borne Disease

R₀ for a Vector-Borne Disease

Trait any measurable feature of an individual organism

Functional trait feeding rate, size, metabolic rate, eggs per day

R₀ for a Vector-Borne Disease

The Combined Effects of Bacterial Symbionts and Aging on Life History Traits in the Pea Aphid, *Acyrthosiphon pisum*

Alice M. Laughton,^{e,b} Maretta H. Fan,^e Nicole M. Gerardo^e

Stage-Structured Infection Transmission and a Spatial Epidemic: A Model for Lyme Disease

Thomas Caraco,^{1,*} Stephan Glavanakov,¹ Gang Chen,² Joseph E. Flaherty,² Toshiro K. Ohsumi,² and Boleslaw K. Szymanski²

Plant viruses alter insect behavior to enhance their spread

Laura L. Ingwell, Sanford D. Eigenbrode & Nilsa A. Bosque-Pérez

Blood-Feeding Behavior of Vesicular Stomatitis Virus Infected Culicoides sonorensis (Diptera: Ceratopogonidae)

KRISTINE E. BENNETT,^{1,2} JESSICA E. HOPPER,¹ MELISSA A. STUART,¹ MARK WEST,³ AND BARBARA S. DROLET¹

61

MARCH, 1986 J. AM. MOSQ. CONTROL ASSOC.	
---	--

THE SIZE OF EMERGING AND HOST-SEEKING AEDES AEGYPTI AND THE RELATION OF SIZE TO BLOOD-FEEDING SUCCESS IN THE FIELD¹

ROGER S. NASCI

Department of Biological and Environmental Sciences, McNeese State University, Lake Charles, LA 70609

Vézilier et al. 2012

