Linear models

Samraat Pawar

Department of Life Sciences (Silwood Park) Imperial College London

Lecture OutLine

Topics:

- What is a linear model?
- Regression
- ANOVA
- Multiple explanatory variables (ANCOVA)
- Fitting linear models to your data
- Is the fitted linear model appropriate for the data?
- How well does a fitted linear model explain the data?

Concepts:

- Types of variable: continuous versus categorical
- Terms and coefficients of a model
- Model fitting and model residuals
- Significance testing and p-values

What predicts the weights (w) of lecturers?

Use intuition and prior knowledge to identify the variables to collect...

- Height (h) in metres
- Exercise per week (e) in hours
- Gender (g)
- Distance from home to nearest Greggs bakery (d) in metres
- Ownership of a games console (c)
... and build a mathematical model:
Lecturer weight $(w)=$ Combination of Independent Variables (that determine w)

$$
w=\beta_{1}+\beta_{2} h+\beta_{3} \boldsymbol{e}+\beta_{4} g_{m}+\beta_{5} d+\beta_{6} c_{s}+\beta_{7} c_{a}+\varepsilon
$$

The linear model

A combination of four components:
Response variable

- A response variable (w)
- A set of explanatory variables (h,e,g,d,c)
- A set of coefficients $\left(\beta_{1}-\beta_{7}\right)$
- A set of residuals (ε)

The Variables

- The response variable is always continuous.
- The explanatory variables can be a mix of:
- Continuous variables: height, exercise and distance.
- Categorical variables: gender and console ownership.
- Categorical variables or factors have a number of levels:
- Gender has two levels (Male / Female)
- Console has three levels (None / Sofa-based / Active)

The Terms and Coefficients

- Each explanatory variable is a term in the model
- Each term has at least one coefficient
- Continuous terms always have one coefficient
- Categorical Factors have $N-1$ coefficients, where N is the number of levels (where are the missing coefficients??)

Wait! Why $N-1$ Coefficients? What is β_{1} ?

$$
w=\beta_{1}+\beta_{2} h+\beta_{3} e+\beta_{4} g_{m}+\beta_{5} d+\beta_{6} c_{s}+\beta_{7} c_{a}+\varepsilon
$$

- Two ways of thinking about β_{1} :
- Continuous variables: the y intercept
- Factors: the baseline or reference value
- This baseline is the value for the first levels of each factor
- All response values start at this baseline
- All the other coefficients measure differences from β_{1} :
- along a continuous slope
- as an offset to a different level

SO, TO PUT IT SIMPLY,

Linear models are just a sum of terms that are linear in the coefficients:

$$
w=\beta_{1}+\beta_{2} h+\beta_{3} e+\beta_{4} g_{m}+\beta_{5} d+\beta_{6} c_{s}+\beta_{7} c_{a}+\varepsilon
$$

What our example linear model means (literally):

- β_{1} is the baseline value of weight for women with no games console
- The model tells us how much to add to this baseline weight...
- for a height of 1.82 metres?
- for doing 150 minutes of exercise a week?
- for being male?
- for living 2416 metres from a Greggs?
- for owning an Xbox?

Examples of Linear Models

$y=\beta_{1}+\beta_{2} x_{1}+\beta_{3} x_{2}+\beta_{4} x_{2}^{2}+\beta_{5} x_{1} x_{2}$

- These are all linear models (fitted to data)
- Each model a sum of terms that are linear in coefficients
- Linear models can include curved relationships (e.g. polynomials) - this is a common point of confusion!

LINEAR MODEL WITH ONE CONTINUOUS VARIABLE

$$
\begin{aligned}
y & =\beta_{1} x \\
4 & =4 \times 1 \\
8 & =4 \times 2 \\
12 & =4 \times 3 \\
16 & =4 \times 4 \\
\beta_{1} & =4
\end{aligned}
$$

Regression with known baseline value (intercept)

LINEAR MODEL WITH ONE CONTINUOUS VARIABLE

$$
\begin{aligned}
y & =\beta_{1}+\beta_{2} x \\
9 & =5+4 \times 1 \\
13 & =5+4 \times 2 \\
17 & =5+4 \times 3 \\
21 & =5+4 \times 4 \\
\beta_{1} & =5 ; \beta_{2}=4
\end{aligned}
$$

Regression with unknown baseline value (intercept)

LINEAR MODEL WITH ONE FACTOR (CATEGORICAL VARIABLE)

Analysis of Variance (ANOVA)

LINEAR MODEL WITH ONE CONTINUOUS VARIABLE AND ONE FACTOR

$$
\begin{aligned}
y & =\beta_{1}+\beta_{2} x+\beta_{3} g_{m} \\
3 & =1+2 \times 1+3 \times 0 \\
5 & =1+2 \times 2+3 \times 0 \\
7 & =1+2 \times 3+3 \times 0 \\
6 & =1+2 \times 1+3 \times 1 \\
8 & =1+2 \times 2+3 \times 1 \\
10 & =1+2 \times 3+3 \times 1 \\
\beta_{1} & =1 ; \beta_{2}=2 ; \beta_{3}=3
\end{aligned}
$$

Multiple Expanatory variables, Analysis of Covariance (ANCOVA)

Closer look at the ANCOVA example

$$
\begin{aligned}
y & =\beta_{1}+\beta_{2} x+\beta_{3} g_{m} \\
3 & =1+2 \times 1+3 \times 0 \\
5 & =1+2 \times 2+3 \times 0 \\
7 & =1+2 \times 3+3 \times 0 \\
6 & =1+2 \times 1+3 \times 1 \\
8 & =1+2 \times 2+3 \times 1 \\
10 & =1+2 \times 3+3 \times 1 \\
\beta_{1} & =1 ; \beta_{2}=2 ; \beta_{3}=3
\end{aligned}
$$

"FITTING" A LINEAR MODEL TO DATA

- Data always shows variation from a perfect model (deviations)
- Missing variables (age, lab vs. field biology, time of day)
- Measurement error
- Stochastic variation

Fitting a Linear Model to Data

What line best passes through (describes) these data?

$$
\begin{gathered}
y=\beta_{1}+\beta_{2} x \\
9.50=?+? \times 1 \\
11.00=?+? \times 2 \\
19.58=?+? \times 3 \\
20.00=?+? \times 4
\end{gathered}
$$

Fitting a Linear Model to Data: Guess

$$
\begin{aligned}
y & =\beta_{1}+\beta_{2} x+\varepsilon \\
9.50 & =12.52+1 \times 1-4.02 \\
11.00 & =12.52+1 \times 2-3.52 \\
19.58 & =12.52+1 \times 3+4.06 \\
20.00 & =12.52+1 \times 4+3.48 \\
\beta_{1} & =12.52 ; \beta_{2}=1
\end{aligned}
$$

Fitting a Linear Model to Data: Guess again!

$$
\begin{aligned}
y & =\beta_{1}+\beta_{2} x+\varepsilon \\
9.50 & =-2.48+7 \times 1+4.98 \\
11.00 & =-2.48+7 \times 2-0.52 \\
19.58 & =-2.48+7 \times 3+1.06 \\
20.00 & =-2.48+7 \times 4-5.52
\end{aligned}
$$

$$
\beta_{1}=-2.48 ; \beta_{2}=7
$$

There must be a better way to do this!

Fitting a Linear Model: Least squares SOLUTION

Minimize the sum of the squared residuals:

The (Ordinary) Least SQuares fitting solution

$$
\begin{aligned}
y & =\beta_{1}+\beta_{2} x+\varepsilon \\
9.50 & =5+4 \times 1+0.50 \\
11.00 & =5+4 \times 2-2.00 \\
19.58 & =5+4 \times 3+2.58 \\
20.00 & =5+4 \times 4-1.00 \\
\beta_{1} & =5 ; \beta_{2}=4
\end{aligned}
$$

THE MATHS MAGIC UNDER THE HOOD

$$
\mathbf{Y}=\mathbf{X} \beta+\varepsilon
$$

$\underbrace{\text { Coefficients }}_{\downarrow}$

\[

\]

THE MATHS MAGIC UNDER THE HOOD

$$
\mathbf{Y}=\mathbf{X} \beta+\varepsilon
$$

THE MATHS MAGIC UNDER THE HOOD

$$
\hat{\mathbf{Y}}=\mathbf{X} \beta
$$

Predicted values and Residuals

$$
\begin{aligned}
\hat{y} & =\beta_{1}+\beta_{2} x \\
9 & =5+4 \times 1 \\
13 & =5+4 \times 2 \\
17 & =5+4 \times 3 \\
21 & =5+4 \times 4
\end{aligned}
$$

Fitting a Linear model: Assumptions

- Linear models are fitted with the following assumptions:
- No measurement error in explanatory variables
- The explanatory variables are not very highly (inter-) correlated
- The model has constant normal variance
- If these assumptions are not met, the model can be very wrong
- The first two you will should consider before even fitting a linear model
- The last one needs can be tested after fitting a linear model

'THE MODEL HAS CONSTANT NORMAL VARIANCE'

- The data have a similar spread around any predicted point in the model

- Overall, the residuals are normally distributed: mostly small but a few larger values
- Points should be spaced so as to to best capture the normal (gaussian) curve

CHECKING IF THE LINEAR MODEL IS APPROPRIATE

- All these three linear model fits appropriate for the data? Are assumptions of the linear model fit satisfied?
- The spread of the real data around the fitted line (fitted values) is about the same across the x-axis - good
- But are the residuals normally distributed?

DIAGNOSTICS FOR A FITTED LINEAR MODEL

- The spread of the real data around the fitted line (fitted values) is about the same across the x-axis

- That is, the residuals have about the same spread irrespective of the fitted values
- The three numbered points in each plot are the three most 'badly behaved' data points.
- Each number is the datum's row number in the R data frame

DIAGNOSTICS FOR A FITTED LINEAR MODEL

- Are the residuals normally distributed?

- Residuals from the first (simple regression) and third (polynomial) model's fits show some deviations from normality at the ends (high and low ends of their distributions), but it's acceptable

Three bad Linear model fits

- These are three bad linear model fits
- The data spread is not the same for all fitted values
- The first model clearly spread is not the same for all fitted values
- Are the residuals normally distributed?

DIAGNOSTICS FOR A (BADLY) FITTED LINEAR MODEL

IS A LINEAR MODEL APPROPRIATE?

Plot the data! Plot the residuals!

How explanatory is the fitted linear model?

- The role of F and t tests in Linear Model fitting
- Significance of Terms: F test
- Does the model explain enough variation?
- Does each term explain enough variation?
- Significance of Coefficients: t tests
- Are the coefficients different from zero?

IS THE FITTED LINEAR MODEL SIGNIFICANT?: F TEST

- Total sum of squares (TSS): Sum of the squared difference between the observed dependent variable (y) and the mean of y (\bar{y}), or, TSS $=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
TSS tells us how much variation there is in the dependent variable
- Explained sum of squares (ESS): Sum of the squared differences between the predicted $y(\hat{y})$ and \bar{y}, or, ESS $=$ $\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$
ESS tells us how much of the variation in the dependent variable our model was able to explain
- Residual sum of squares (RSS): Sum of the squared differences between the observed y and the predicted \hat{y} (residuals), or, $\mathrm{RSS}=\sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}$
RSS tells us how much of the variation in the dependent variable our model could not explain
- Of course, TSS = ESS + RSS

NULL VS. OVER-SPECIFIED MODELS: TWO ENDPOINTS

- The null model $\left(H_{0}\right)$
- Nothing is going on
- Biggest possible residuals
- Residual sum of squares (RSS) is as big as it can be
- The saturated model
- One coefficient per data point
- RSS is zero - all the sums of squares are now explained (ESS)

THE 'RIGHT’ (INTERESTING) MODEL

- Added a term with three levels
- Some but not all of the residual sums of squares are explained
- Is this enough to be interesting?

F statistic of the fitted Linear Model

What it really means: F value by chance?

What would be the distribution of F if nothing is going on?

$$
y=\beta_{1}+\beta_{2} f_{b}+\beta_{3} f_{c}
$$

- Simulate 10,000 datasets where nothing is going on (H_{0} is true)
- Calculate F for each random dataset under H_{1}
- H_{1} typically has a low F - but sometimes it is high by chance

What it really means: F value by chance?

- In our possibly interesting model, $F=4.52$
- 95% of the random data sets have $F \leq 5.5$
- A model this good would be found by chance 1 in 16 times ($p=0.063$)
- Close, but not quite interesting (significant) enough!

ARE THE COEFFICIENTS DIFFERENT FROM ZERO?

$$
t=\frac{\frac{\text { Effect size }}{\downarrow}}{\text { Precision }}=\frac{\text { Coefficient valu }}{\text { Standard error }}
$$

- The value of a coefficient in a model is an effect size
- How much does changing that predictor variable change the response variable?
- The standard error estimates how precisely we know the value

Variation in effect size and precision

Small effect

Large effect

What it really means: t Values by chance

What is the distribution of t if nothing is going on?

- Simulate 10,000 datasets where nothing is going on (H_{0} is true)
- Calculate t for each random dataset under H_{1}
- H_{1} typically has a t near zero but can be strongly positive or negative by chance

DIstribution of t

- 95% of the random data sets have $t \leq \pm 2.09$
- Only the two higher precision models are expected to occur less than 1 time in 20 by chance.

SOME MORE EXAMPLES OF LINEAR MODEL FITTING

- The null hypothesis $\left(H_{0}\right)$: Nothing is going on (model is just β_{1} !)
- The residuals (and therefore, RSS) will get smaller as we include more terms to the model
- How much smaller is enough?

SOME MORE EXAMPLES OF LINEAR MODEL FITTING

First try: Add one continuous term

- Fitted an alternative model $\left(H_{1}\right)$ using a predictor variable x
- i.e., Added one term (x) to the model to give $\left(H_{1}\right)$
- Do we reject H_{0} and accept this new model?

SOME MORE EXAMPLES OF LINEAR MODEL FITTING

Second try: Add one continuous term

- Fitted another model $\left(H_{2}\right)$ with continuous predictor x and factor f
- The RSS gets still smaller
- Is this even better than H_{1} ?

Compare the three models

		Model A	Model B	Model C
H_{0}	Unexplained SS	241.97	185.02	259.80
	Explained SS	0	0	0
H_{1}	Unexplained SS	241.97	173.21	62.95
	Explained SS	0.00	11.81	196.85
H_{2}	Unexplained SS	238.07	123.75	25.05
	Explained SS	3.9	61.27	234.75

- Which model would you choose between H_{1} and H_{2} ?
- Every alternative model is an alternative hypothesis

Linear Models: Summary

- Linear models predict a continuous response variable
- A LM is a sum of terms that are linear in the coefficients capturing the effect sizes of explanatory variables
- LMs are fitted using (ordinary) least squares - minimizes sum of squared residuals
- Need to check if the fitted LM is appropriate
- Then check if the LM is explanatory
- Fitting alternative LMs = Testing alternative hypotheses

