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LECTURE OUTLINE

Topics:
What is a linear model?

Regression
ANOVA
Multiple explanatory variables (ANCOVA)

Fitting linear models to your data
Is the fitted linear model appropriate for the data?
How well does a fitted linear model explain the data?

Concepts:
Types of variable: continuous versus categorical
Terms and coefficients of a model
Model fitting and model residuals
Significance testing and p-values

Samraat Linear models 2 / 48



WHAT PREDICTS THE WEIGHTS (w ) OF LECTURERS?

Use intuition and prior knowledge to identify the variables to collect...
Height (h) in metres
Exercise per week (e) in hours
Gender (g)
Distance from home to nearest Greggs bakery (d) in metres
Ownership of a games console (c)

. . . and build a mathematical model:

Lecturer weight (w) = Combination of Independent Variables (that
determine w)

w = β1 + β2h + β3e + β4gm + β5d + β6cs + β7ca + ε
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THE LINEAR MODEL

A combination of four components:

w = β1 + β2 h + β3 e + β4 gm + β5 d + β6 cs + β7 ca + ε

Explanatory variables

Coefficients

Response variable

Residuals

A response variable (w)
A set of explanatory variables (h,e,g,d , c)
A set of coefficients (β1 – β7)
A set of residuals (ε)
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THE VARIABLES

w = β1 + β2 h + β3 e + β4 gm + β5 d + β6 cs + β7 ca + ε

Continuous variables

Categorical variables

The response variable is always continuous.

The explanatory variables can be a mix of:
Continuous variables: height, exercise and distance.
Categorical variables: gender and console ownership.

Categorical variables or factors have a number of levels:
Gender has two levels (Male / Female)
Console has three levels (None / Sofa-based / Active)
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THE TERMS AND COEFFICIENTS

w = β1 + β2 h + β3 e + β4 gm + β5 d + β6 cs + β7 ca + ε

Height Exercise Distance

Gender Console

Each explanatory variable is a term in the model

Each term has at least one coefficient

Continuous terms always have one coefficient

Categorical Factors have N − 1 coefficients, where N is the
number of levels (where are the missing coefficients??)
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WAIT! WHY N − 1 COEFFICIENTS? WHAT IS β1?

w = β1 + β2 h + β3 e + β4 gm + β5 d + β6 cs + β7 ca + ε

Two ways of thinking about β1:
Continuous variables: the y intercept
Factors: the baseline or reference value

This baseline is the value for the first levels of each factor

All response values start at this baseline

All the other coefficients measure differences from β1:
along a continuous slope
as an offset to a different level
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SO, TO PUT IT SIMPLY,

Linear models are just a sum of terms that are linear in the coefficients:

w = β1 + β2 h + β3 e + β4 gm + β5 d + β6 cs + β7 ca + ε

What our example linear model means (literally):
β1 is the baseline value of weight for women with no games
console

The model tells us how much to add to this baseline weight . . .
for a height of 1.82 metres?
for doing 150 minutes of exercise a week?
for being male?
for living 2416 metres from a Greggs?
for owning an Xbox?
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EXAMPLES OF LINEAR MODELS
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y = β1 + β2x1 + β3x2 + β4x2
2 + β5x1x2

These are all linear models (fitted to data)

Each model a sum of terms that are linear in coefficients

Linear models can include curved relationships (e.g. polynomials)
— this is a common point of confusion!
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LINEAR MODEL WITH ONE CONTINUOUS VARIABLE
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y = β1x

4 = 4 × 1
8 = 4 × 2

12 = 4 × 3
16 = 4 × 4

β1 = 4

Regression with known baseline value (intercept)

Samraat Linear models 10 / 48



LINEAR MODEL WITH ONE CONTINUOUS VARIABLE
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9 = 5 + 4 × 1
13 = 5 + 4 × 2
17 = 5 + 4 × 3
21 = 5 + 4 × 4

β1 = 5;β2 = 4

Regression with unknown baseline value (intercept)
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LINEAR MODEL WITH ONE FACTOR (CATEGORICAL
VARIABLE)
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β1 = 2;β2 = 3

Analysis of Variance (ANOVA)

Samraat Linear models 12 / 48



LINEAR MODEL WITH ONE CONTINUOUS VARIABLE
AND ONE FACTOR
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β1 = 1;β2 = 2;β3 = 3

Multiple Expanatory variables, Analysis of Covariance (ANCOVA)
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CLOSER LOOK AT THE ANCOVA EXAMPLE
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“FITTING” A LINEAR MODEL TO DATA
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Ailuridae
Canidae
Eupleridae
Felidae
Herpestidae
Hyaenidae
Mephitidae
Mustelidae
Nandiniidae
Procyonidae
Viverridae

Rizzuto et al. 2017, Nat Ecol Evol

Data always shows variation from a perfect model (deviations)
Missing variables (age, lab vs. field biology, time of day)
Measurement error
Stochastic variation

Samraat Linear models 15 / 48



FITTING A LINEAR MODEL TO DATA
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What line best passes through
(describes) these data?

y = β1 + β2x

9.50 = ? + ? × 1
11.00 = ? + ? × 2
19.58 = ? + ? × 3
20.00 = ? + ? × 4
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FITTING A LINEAR MODEL TO DATA: GUESS
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y = β1 + β2x + ε

9.50 = 12.52 + 1 × 1 − 4.02
11.00 = 12.52 + 1 × 2 − 3.52
19.58 = 12.52 + 1 × 3 + 4.06
20.00 = 12.52 + 1 × 4 + 3.48

β1 = 12.52;β2 = 1
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FITTING A LINEAR MODEL TO DATA: GUESS AGAIN!

●
●

● ●

0 1 2 3 4 5

0
5

10
15

20
25

x

y

y = β1 + β2x + ε

9.50 = −2.48 + 7 × 1 + 4.98
11.00 = −2.48 + 7 × 2 − 0.52
19.58 = −2.48 + 7 × 3 + 1.06
20.00 = −2.48 + 7 × 4 − 5.52

β1 = −2.48;β2 = 7

There must be a better way to do this!
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FITTING A LINEAR MODEL: LEAST SQUARES
SOLUTION

Minimize the sum of the squared residuals:
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THE (ORDINARY) LEAST SQUARES FITTING SOLUTION
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9.50 = 5 + 4 × 1 + 0.50
11.00 = 5 + 4 × 2 − 2.00
19.58 = 5 + 4 × 3 + 2.58
20.00 = 5 + 4 × 4 − 1.00

β1 = 5;β2 = 4
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THE MATHS MAGIC UNDER THE HOOD

Y = Xβ + ε


y1
y2
y3
y4

 =


1 x1
1 x2
1 x3
1 x4

 [
β1
β2

]
+


ε1
ε2
ε3
ε4



Observed values

Model matrix

Coefficients

Residuals
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THE MATHS MAGIC UNDER THE HOOD

Y = Xβ + ε


9.50

11.00
19.58
20.00

 =


1 1
1 2
1 3
1 4

 [
5
4

]
+


0.50

−2.00
2.58

−1.00



Observed values

Model matrix

Coefficients

Residuals

Given these . . . . . . find the set of these. . .

. . . that minimize the sum of the squares of these.
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THE MATHS MAGIC UNDER THE HOOD

Ŷ = Xβ


9

13
17
21

 =


1 1
1 2
1 3
1 4

 [
5
4

]
Predicted or fitted values

Model matrix

Coefficients
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PREDICTED VALUES AND RESIDUALS
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21 = 5 + 4 × 4
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FITTING A LINEAR MODEL: ASSUMPTIONS

Linear models are fitted with the following assumptions:
No measurement error in explanatory variables
The explanatory variables are not very highly (inter-) correlated
The model has constant normal variance

If these assumptions are not met, the model can be very
wrong

The first two you will should consider before even fitting a linear
model

The last one needs can be tested after fitting a linear model
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‘THE MODEL HAS CONSTANT NORMAL VARIANCE’
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The data have a similar spread
around any predicted point in
the model

Overall, the residuals are
normally distributed: mostly
small but a few larger values
Points should be spaced so as
to to best capture the normal
(gaussian) curve
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CHECKING IF THE LINEAR MODEL IS APPROPRIATE
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All these three linear model fits appropriate for the data? Are
assumptions of the linear model fit satisfied?

The spread of the real data around the fitted line (fitted values) is
about the same across the x-axis – good

But are the residuals normally distributed?
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DIAGNOSTICS FOR A FITTED LINEAR MODEL

The spread of the real data around the fitted line (fitted values) is
about the same across the x-axis
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That is, the residuals have about the same spread irrespective of
the fitted values

The three numbered points in each plot are the three most ‘badly
behaved’ data points.

Each number is the datum’s row number in the R data frame
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DIAGNOSTICS FOR A FITTED LINEAR MODEL

Are the residuals normally distributed?
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Residuals from the first (simple regression) and third (polynomial)
model’s fits show some deviations from normality at the ends
(high and low ends of their distributions), but it’s acceptable
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THREE BAD LINEAR MODEL FITS
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These are three bad linear model fits
The data spread is not the same for all fitted values

The first model clearly spread is not the same for all fitted values

Are the residuals normally distributed?
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DIAGNOSTICS FOR A (BADLY) FITTED LINEAR MODEL
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IS A LINEAR MODEL APPROPRIATE?

Plot the data!
Plot the residuals!
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HOW EXPLANATORY IS THE FITTED LINEAR MODEL?

The role of F and t tests in Linear Model fitting

Significance of Terms: F test
Does the model explain enough variation?
Does each term explain enough variation?

Significance of Coefficients: t tests
Are the coefficients different from zero?
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IS THE FITTED LINEAR MODEL SIGNIFICANT?: F TEST

Total sum of squares (TSS): Sum of the squared difference
between the observed dependent variable (y ) and the mean of y
(ȳ ), or, TSS =

∑n
i=1(yi − ȳ)2

TSS tells us how much variation there is in the dependent variable

Explained sum of squares (ESS): Sum of the squared
differences between the predicted y (ŷ ) and ȳ , or, ESS =∑n

i=1(ŷi − ȳ)2

ESS tells us how much of the variation in the dependent variable
our model was able to explain

Residual sum of squares (RSS): Sum of the squared differences
between the observed y and the predicted ŷ (residuals), or,
RSS =

∑n
i=1(ŷi − yi)

2

RSS tells us how much of the variation in the dependent variable
our model could not explain

Of course, TSS = ESS + RSS
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NULL VS. OVER-SPECIFIED MODELS: TWO ENDPOINTS
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y
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y = β1 + β2fb + … + β8fh

ESS = 16.50
RSS = 0.00

The null model (H0)
Nothing is going on
Biggest possible residuals
Residual sum of squares
(RSS) is as big as it can be

The saturated model
One coefficient per data point
RSS is zero - all the sums of
squares are now explained
(ESS)
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THE ‘RIGHT’ (INTERESTING) MODEL
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y
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y = β1 + β2fb + β3fc

ESS = 9.92
RSS = 6.59

Added a term with three levels

Some but not all of the residual sums of squares are explained

Is this enough to be interesting?
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F STATISTIC OF THE FITTED LINEAR MODEL

F =
ESS / Nc

RSS / Nr

=
9.92 / 2

6.59 / 6
= 4.52

Large ESS
is good

Small RSS
is good

Fewer coefficients
is better

Residual degrees of freedom:
larger sample size is better
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WHAT IT REALLY MEANS: F VALUE BY CHANCE?

What would be the distribution of F if nothing is going on?
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ESS = 5.06
RSS = 1.27
F = 11.98

Simulate 10,000 datasets where nothing is going on (H0 is true)

Calculate F for each random dataset under H1

H1 typically has a low F – but sometimes it is high by chance
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WHAT IT REALLY MEANS: F VALUE BY CHANCE?

In our possibly interesting model, F = 4.52

95% of the random data sets have F ≤ 5.5

A model this good would be found by chance 1 in 16 times
(p= 0.063)

Close, but not quite interesting (significant) enough!
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ARE THE COEFFICIENTS DIFFERENT FROM ZERO?

t =
Effect size

Precision
=

Coefficient value

Standard error

Large is good: bigger changes

Small is good: known more precisely

The value of a coefficient in a model is an effect size

How much does changing that predictor variable change the
response variable?

The standard error estimates how precisely we know the value
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VARIATION IN EFFECT SIZE AND PRECISION
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β2 = 0.321
se = 0.016
t = 19.58
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WHAT IT REALLY MEANS: t VALUES BY CHANCE

What is the distribution of t if nothing is going on?
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Simulate 10,000 datasets where nothing is going on (H0 is true)

Calculate t for each random dataset under H1

H1 typically has a t near zero but can be strongly positive or
negative by chance
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DISTRIBUTION OF t

95% of the random data sets have t ≤ ±2.09

Only the two higher precision models are expected to occur less
than 1 time in 20 by chance.
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SOME MORE EXAMPLES OF LINEAR MODEL FITTING
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SS = 259.80

y = β1

The null hypothesis (H0): Nothing is going on (model is just β1!)

The residuals (and therefore, RSS) will get smaller as we include
more terms to the model

How much smaller is enough?
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SOME MORE EXAMPLES OF LINEAR MODEL FITTING

First try: Add one continuous term
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SS = 62.95

y = β1 + β2x

Fitted an alternative model (H1) using a predictor variable x

i.e., Added one term (x) to the model to give (H1)

Do we reject H0 and accept this new model?
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SOME MORE EXAMPLES OF LINEAR MODEL FITTING

Second try: Add one continuous term
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y = β1 + β2x + β3fb + β4fc
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SS = 25.05

y = β1 + β2x + β3fb + β4fc

Fitted another model (H2) with continuous predictor x and factor f

The RSS gets still smaller

Is this even better than H1?
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COMPARE THE THREE MODELS

Model A Model B Model C
H0 Unexplained SS 241.97 185.02 259.80

Explained SS 0 0 0
H1 Unexplained SS 241.97 173.21 62.95

Explained SS 0.00 11.81 196.85
H2 Unexplained SS 238.07 123.75 25.05

Explained SS 3.9 61.27 234.75

Which model would you choose between H1 and H2?

Every alternative model is an alternative hypothesis
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LINEAR MODELS: SUMMARY

Linear models predict a continuous response variable

A LM is a sum of terms that are linear in the coefficients capturing
the effect sizes of explanatory variables

LMs are fitted using (ordinary) least squares — minimizes sum of
squared residuals

Need to check if the fitted LM is appropriate

Then check if the LM is explanatory

Fitting alternative LMs = Testing alternative hypotheses
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